__ AN169
SILICON LABS

USBXPRESS® PROGRAMMER’S GUIDE

Relevant Devices

This application note applies to the following devices:
C8051F320, C8051F321, C8051F326, C8051F327, C8051F340, C8051F341, C8051F342, C8051F343,
C8051F344, C8051F345, C8051F346, C8051F347, CP2101, CP2102, CP2103

1. Introduction

The Silicon Laboratories USBXpress® Development Kit provides a complete host and device software solution for
interfacing Silicon Laboratories C8051F32x, C8051F34x, and CP210x devices to the Universal Serial Bus (USB).
No USB protocol or host device driver expertise is required. Instead, a simple, high-level Application Program
Interface (API) for both the host software and device firmware is used to provide complete USB connectivity.

The USBXpress Development Kit includes Windows device drivers, Windows device driver installer, host interface
function library (host API) provided in the form of a Windows Dynamic Link Library (DLL), and device firmware
interface function library (C8051F32x and C8051F34x devices only). The included device drivers and installation
files support MS Windows 2000/XP/Server 2003.

User Application User Application
(eg. VC++ custom app) (eg. VC++ custom app)
USBXpress DLL / API USBXpress DLL / API
USBXpress Driver USBXpress Driver
| USBRootHub | | USBRootHub |
PC PC

¢ CP210x
USBXpress Firmware USB-UART Bridge
Library

User Firmware i?

External RS-232
‘F32x/’F34x MCU Transceiver or

UART Circuitry

Figure 1. USBXpress Data Flow

Rev. 1.8 3/07 Copyright © 2007 by Silicon Laboratories AN169

AN169

2. Host API Functions

The host API is provided in the form of a Windows Dynamic Link Library (DLL). The host interface DLL
communicates with the USB device via the provided device driver and the operating system's USB stack. The
following is a list of the host API functions available:

SI GetNumDevices () - Returns the number of devices connected

SI GetProductString() - Returns a descriptor for a device

SI_Open() - Opens a device and returns a handle

SI Close() - Cancels pending 10 and closes a device

SI Read() - Reads a block of data from a device

SI Write() - Writes a block of data to a device

SI FlushBuffers () - Flushes the TX and RX buffers for a device
SI SetTimeouts () - Sets read and write block timeouts

SI GetTimeouts () - Gets read and write block timeouts
SI_CheckRXQueue () - Returns the number of bytes in a device's RX queue
SI_SetBaudRate () - Sets the specified CP210x Baud Rate

SI SetBaudDivisor - Sets the specified CP210x Baud Divisor Value

SI SetFlowControl - Sets the CP210x device Flow Control

0
SI_SetLineControl () - Sets the CP210x device Line Control
0
SI GetModemStatus () - Gets the CP210x device Modem Status

SI_SetBreak() - Sets the Break State for CP210x device.

SI ReadLatch () - Gets the port latch value from a CP2103 device

SI WriteLatch () - Sets the port latch value to a CP2103 device
SI_GetPartNumber () - Gets the CP210x device part number

SI DeviceIOControl () - Allows sending low-level commands to the device driver

In general, the user initiates communication with the target USB device(s) by making a call to SI_GetNumDevices.
This call will return the number of target devices. This number is then used as a range when calling
SI_GetProductString to build a list of device serial numbers or product description strings.

To access a device, it must first be opened by a call to SI_Open using an index determined from the call to
SI_GetNumbDevices. The SI_Open function will return a handle to the device that is used in all subsequent
accesses. Data I/O is performed using the SI_Write and SI_Read functions. When I/O operations are complete, the
device is closed by a call to SI_Close.

Additional functions are provided to flush the transmit and receive buffers (S/_FlushBuffers), set receive and
transmit timeouts (S/_SetTimeouts), check the receive buffer's status (S/_CheckRXQueue), and miscellaneous
device control (SI_DevicelOControl).

For CP210x devices, functions are available to set the baud rate (S/_SetBaudRate); set the baud divisor
(SI_SetBaudDivisior); adjust the line control settings such as word length, stop bits, and parity (S/_SetLineControl);
set hardware handshaking, software handshaking, and modem control signals (SI_SetFlowControl); and get modem
status (S/_GetModemStatus). Additional functions are available for CP2103 devices to get (S/_ReadLatch) and set
(SI_WriteLatch) the values of the additional GPIO pins available on the device. In order to differentiate between
CP210x devices, a function (SI_GetPartNumber) has been provided to return the part number.

Each of these functions are described in detail in the following sections. Type definitions and constants are defined
in "Appendix D—Definitions from C++ header file SIUSBXp.h”.

®
2 Rev. 1.8 @

SILICON LABS

AN169

2.1. SI_GetNumDevices

Description: This function returns the number of devices connected to the host.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7, CP2101/2/3
Prototype: SI_STATUS SI_GetNumDevices (LPDWORD NumDevices)

Parameters: 1. NumDevices—Address of a DWORD variable that will contain the number of devices
connected on return.

Return Value: S| STATUS = S| SUCCESS or
SI_DEVICE_NOT_FOUND or
SI_INVALID_PARAMETER

2.2. Sl_GetProductString

Description: This function returns a null terminated serial number (S/N) string or product description string for
the device specified by an index passed in DeviceNum. The index for the first device is 0 and the
last device is the value returned by S/_GetNumDevices — 1.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7, CP2101/2/3

Prototype: SI_STATUS SI_ GetProductString (DWORD DeviceNum, LPVOID DeviceString,
DWORD Options)

Parameters: 1. DeviceNum—Index of the device for which the product description string or serial humber
string is desired.

2. DeviceString—Variable of type SI_DEVICE_STRING which will contain a NULL terminated
device descriptor or serial number string on return.

3. Options—DWORD containing flags to determine if DeviceString contains a serial number,
product description, Vendor ID, or Product ID string. See "Appendix D—Definitions from C++
header file SiIUSBXp.h” for flags.

Return Value: SI_STATUS = SI_SUCCESS or
SI_DEVICE_NOT_FOUND or
SI_INVALID_PARAMETER

2.3. SIl_Open

Description: Opens a device (using device number as returned by SI_GetNumDevices) and returns a handle
which will be used for subsequent accesses.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7, CP2101/2/3
Prototype: SI_STATUS SI Open (DWORD DeviceNum, HANDLE *Handle)

Parameters: 1. DeviceNum—Device index. O for first device, 1 for 2nd, etc.

2. Handle—Pointer to a variable where the handle to the device will be stored. This handle will be
used by all subsequent accesses to the device.

Return Value: S| _STATUS

S| SUCCESS or
SI_DEVICE_NOT_FOUND or
SI_INVALID_PARAMETER

®
@ Rev. 1.8 3

SILICON LABS

AN169

2.4. Sl _Close

Description:

Closes an open device using the handle provided by S/ Open and sets the handle to
INVALID_HANDLE_VALUE.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7, CP2101/2/3

Prototype:

Parameters:

Return Value:

SI_STATUS SI Close (HANDLE Handle)
1. Handle—Handle to the device to close as returned by S/_Open.

SI_STATUS = SI_SUCCESS or
SI_INVALID_HANDLE

2.5. Sl_Read

Description:

Reads the available number of bytes into the supplied buffer and retrieves the number of bytes
that were read (this can be less than the number of bytes requested). This function returns syn-
chronously if the overlapped object is set to NULL (this happens by default) but will not block sys-
tem execution. If an initialized OVERLAPPED object is passed then the function returns
immediately. If the read completed then the status will be SI_SUCCESS but if I/O is still pending
then it will return STATUS_IO_PENDING. If STATUS_IO_PENDING is return, the OVERLAPPED
object can then be waited on using WaitForSingleObject(), and retrieve data or cancel using
GetOverlappedResult() or Cancello() respectively (as documented on MSDN by Microsoft). This
functionality allows for multiple reads to be issued and waited on at a time. If any data is avail-
able when SI_Read is called it will return so check NumBytesReturned to determine if all
requested data was returned. To make sure that SI_Read returns the requested number of bytes
use SI_CheckRxQueue() described in Section "2.10. SI_CheckRXQueue" on page 6.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7, CP2101/2/3

Prototype:

Parameters:

Return Value:

SI_STATUS SI_Read (HANDLE Handle, LPVOID Buffer, DWORD NumBytesToRead,
DWORD *NumBytesReturned, DWORD *NumBytesReturned, OVERLAPPED* o = NULL)

1. Handle—Handle to the device to read as returned by S/_Open.

2. Buffer—Address of a character buffer to be filled with read data.

3. NumBytesToRead—Number of bytes to read from the device into the buffer (0-64 kB).
4

. NumBytesReturned—Address of a DWORD which will contain the number of bytes actually
read into the buffer on return.

5. (Optional) o—Address of an initialized OVERLAPPED object that can be used for
asynchronous reads.

SI_STATUS = SI_SUCCESS or
SI_INVALID_REQUEST_LENGTH or
SI_INVALID_PARAMETER or
SI_RX_QUEUE_NOT_READY or
SI_INVALID_HANDLE or
SI_READ_TIMED_OUT or
SI_I0_PENDING

®
Rev. 1.8 @

SILICON LABS

AN169

2.6. SI_Write

Description:

Writes the specified number of bytes from the supplied buffer to the device. This function returns
synchronously if the overlapped object is set to NULL (this happens by default) but will not block
system execution. An initialized OVERLAPPED object may be specified and waited on just as
described in the description for SI_Read(), Section "2.5. SI_Read" on page 4.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7, CP2101/2/3

Prototype:

Parameters:

Return Value:

SI_STATUS SI _Write (HANDLE Handle, LPVOID Buffer, DWORD NumBytesToWrite,
DWORD *NumBytesWritten, DWORD *NumBytesWritten, OVERLAPPED* o = NULL)

1. Handle—Handle to the device to write as returned by SI_Open.

2. Buffer—Address of a character buffer of data to be sent to the device.

3. NumBytesToWrite—Number of bytes to write to the device (0—4096 bytes).
4

. NumBytesWritten—Address of a DWORD which will contain the number of bytes actually
written to the device.

5. (Optional) o—Address of an initialized OVERLAPPED object that can be used for
asynchronous writes.

SI_STATUS = SI_SUCCESS or
SI_WRITE_ERROR or
SI_INVALID_REQUEST_LENGTH or
SI_INVALID_PARAMETER or
SI_INVALID_HANDLE or
SI_WRITE_TIMED_OUT or
SI_I0_PENDING

2.7. Sl_FlushBuffers

Description:

On ‘F32x/'F34x devices, this function flushes both the receive buffer in the USBXpress device
driver and the transmit buffer in the device. Note: Parameter 2 and 3 have no effect and any
value can be passed when used with ‘F32x/'F34x devices.

On CP210x devices, this function operates in accordance with parameters 2 and 3. If parameter
2 (FlushTransmit) is non-zero, the CP210x device’s UART transmit buffer is flushed. If parameter
3 (FlushReceive) is non-zero, the CP210x device’s UART receive buffer is flushed. If parameters
2 and 3 are both non-zero, then both the CP210x device UART transmit buffer and UART
receive buffer are flushed.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7, CP2101/2/3

Prototype:

Parameters:

Return Value:

SI STATUS SI FlushBuffers (HANDLE Handle, BYTE FlushTransmit,
BYTE FlushReceive)

1. Handle—Handle to the device as returned by S/_Open.

2. FlushTransmit—Set to a non-zero value to flush the CP210x UART transmit buffer.
3. FlushReceive—Set to a non-zero value to flush the receive buffer.

SI_STATUS SI_SUCCESS or

SI_INVALID_HANDLE

®
@ Rev. 1.8 5

SILICON LABS

AN169

2.8. Sl_SetTimeouts

Description: Sets the read and write timeouts. Timeouts are used for SI_Read and SI_Write when called syn-
chronously (OVERLAPPED* o is set to NULL). The default value for timeouts is INFINITE
(OXFFFFFFFF), but they can be set to wait for any number of milliseconds between 0x0 and
OxFFFFFFFE.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7, CP2101/2/3
Prototype: SI_STATUS SI_SetTimeouts (DWORD ReadTimeout, DWORD WriteTimeout)

Parameters: 1. ReadTimeout—SI_Read operation timeout (in milliseconds).
2. WriteTimeout—SI_Write operation timeout (in milliseconds).

Return Value: S| STATUS = S| SUCCESS

2.9. SIl_GetTimeouts

Description: Returns the current read and write timeouts. If a timeout value is OXFFFFFFFF (INFINITE) it has
been set to wait infinitely; otherwise the timeouts are specified in milliseconds.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7, CP2101/2/3
Prototype: SI STATUS SI GetTimeouts (LPDWORD ReadTimeout, LPDWORD WriteTimeout)

Parameters: 1. ReadTimeout—SI_Read operation timeout (in milliseconds).
2. WriteTimeout—SI_Write operation timeout (in milliseconds).

Return Value: SI_STATUS = SI_SUCCESS or
SI_INVALID_PARAMETER

2.10. SI_CheckRXQueue

Description: Returns the number of bytes in the receive queue and a status value that indicates if an overrun
(SI_QUEUE_OVERRUN) has occurred and if the RX queue is ready (SI_QUEUE_READY) for
reading. Upon indication of an Overrun condition it is recommended that data transfer be
stopped and all buffers be flushed using SI_FlushBuffers command.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7, CP2101/2/3

Prototype: SI_STATUS SI CheckRXQueue (HANDLE Handle, LPDWORD NumBytesInQueue,
LPDWORD QueueStatus)

Parameters: 1. Handle—Handle to the device as returned by S/ _Open.

2. NumBytesinQueue—Address of a DWORD variable that contains the number of bytes
currently in the receive queue on return.

3. QueueStatus—Address of a DWORD variable that contains the SI_RX_EMPTY (also
SI_RX_NO_OVERRUN), SI_RX_OVERRUN, or SI_RX_READY flag.

Return Value: S| _STATUS = S| SUCCESS or
SI_DEVICE_IO_FAILED or
SI_INVALID_HANDLE or
SI_INVALID_PARAMETER

®
6 Rev. 1.8 @

SILICON LABS

AN169

2.11. SlI_SetBaudRate

Description: Sets the Baud Rate. Refer to the device data sheet for a list of Baud Rates supported by the
device.

Supported Devices: CP2101/2/3
Prototype: SI_STATUS SI_SetBaudRate (HANDLE Handle, DWORD dwBaudRate)

Parameters: 1. Handle—Handle to the device as returned by S/_Open.
2. dwBaudRate—A DWORD value specifying the Baud Rate to set.

Return Value: Sl STATUS = S| SUCCESS or
SI_INVALID_BAUDRATE or
SI_INVALID_HANDLE

2.12. Sl_SetBaudDivisor

Description: Sets the Baud Rate directly by using a specific divisor value. This function is obsolete; use
S|_SetBaudRate instead.

Supported Devices: CP2101/2/3
Prototype: SI STATUS SI SetBaudDivisor (HANDLE Handle, WORD wBaudDivisor)

Parameters: 1. Handle—Handle to the device as returned by S/_Open.
2. wBaudDiviso—A WORD value specifying the Baud Divisor to set.

Return Value: SI_STATUS = SI_SUCCESS or
SI_INVALID_HANDLE

®
@ Rev. 1.8 7

SILICON LABS

AN169

2.13. Sl_SetLineControl

Description:

Adjusts the line control settings: word length, stop bits, and parity. Refer to the device data sheet

for valid line control settings.

Supported Devices: CP2101/2/3

Prototype:

Parameters:

Return Value:

SI_STATUS SI_SetLineControl (HANDLE Handle,

1. Handle—Handle to the device as returned by S/_Open.

WORD wLineControl)

2. wLineControl—A WORD variable that contains the desired line control settings. Possible input

settings are as follows:
Bits -3 Number of Stop bits

0: 1 stop bit;

1: 1.5 stop bits;
2: 2 stop bits
Bits 4-7 Parity

0: None

1: Odd

2: Even

3: Mark

4: Space

Bits 8—15 Number of bits per word
5,6,7,0r8

SI_STATUS = SI_SUCCESS or
SI_DEVICE_IO_FAILED or
SI_INVALID_HANDLE or
SI_INVALID_PARAMETER

Rev. 1.8

>

SILICON LABS

AN169

2.14. Sl_SetFlowControl

Description: Adjusts the following flow control settings: set hardware handshaking, software handshaking,
and modem control signals. See "Appendix D—Definitions from C++ header file SiIUSBXp.h” for
pin characteristic definitions.

Supported Devices: CP2101/2/3

Prototype: SI_STATUS SI_SetFlowControl (HANDLE Handle, BYTE bCTS MaskCode,
BYTE bRTS MaskCode, BYTE bDTR MaskCode, BYTE bDSRMaskCode,
BYTE bDCD MaskCode, BYTE bFlowXonXoff)

Parameters: 1. Handle—Handle to the device as returned by S/_Open.

2. bCTS _MaskCode—The CTS pin characteristic must be as follows:
SI_STATUS_INPUT or
SI_HANDSHAKE_LINE.

3. bRTS_ MaskCode—The RTS pin characteristic must be as follows:
SI_HELD_ACTIVE,
SI_HELD_INACTIVE,
SI_FIRMWARE_CONTROLLED or
SI_TRANSMIT_ACTIVE_SIGNAL.

4. bDTR_MaskCode—The DTR pin characteristic must be as follows:
S| HELD INACTIVE,
S| HELD ACTIVE or
S| FIRMWARE_CONTROLLED.

5. bDSR_MaskCode—The DSR pin characteristic must be as follows:
SI_STATUS_INPUT or
SI_HANDSHAKE_LINE.

6. bDCD_MaskCode—The DCD pin characteristic must be as follows:
SI_STATUS_INPUT or
SI_HANDSHAKE_LINE.

7. bFlowXonXoff—Sets software flow control to be off if the value is 0, and on using the character
value specified if value is non-zero.

Return Value: S| STATUS = S| SUCCESS or
SI_DEVICE_IO_FAILED or
SI_INVALID_HANDLE or
SI_INVALID_PARAMETER

®
@ Rev. 1.8 9

SILICON LABS

AN169

2.15. SI_GetModem Status

Description: Gets the Modem Status from the device. This includes the modem pin states.
Supported Devices: CP2101/2/3
Prototype: SI_STATUS SI_GetModemStatus (HANDLE Handle, PBYTE ModemStatus)

Parameters: 1. Handle—Handle to the device as returned by S/_Open.

2. IpbModemStatus—Address of a BYTE variable that contains the current states of the RS-232
modem control lines. The byte is defined as follows:

Bit O: DTR State
Bit 1: RTS State
Bit 4: CTS State
Bit 5: DSR State
Bit 6: RI State

Bit 7: DCD State

Return Value: Sl STATUS = S| SUCCESS or
SI_DEVICE_IO_FAILED or
SI_INVALID_HANDLE or
SI_INVALID_PARAMETER

2.16. Sl_SetBreak

Description: Sends a break state (transmit or reset) to a CP210x device. Note that this function is not neces-
sarily synchronized with queued transmit data.

Supported Devices: CP2101/2/3
Prototype: SI STATUS SI SetBreak (HANDLE cyHandle, WORD wBreakState)

Parameters: 1. Handle—Handle to the device as returned by SI_Open.

2. wBreakState—The break state to set. If this value is a 0x0000 then the break is reset. If this
value is a 0x0001 then a break is transmitted.

Return Value: SI_STATUS = SI_SUCCESS or
SI_DEVICE_IO_FAILED or
SI_INVALID_HANDLE or
SI_INVALID_PARAMETER

®
10 Rev. 1.8 @

SILICON LABS

AN169

2.17. SI_ReadLatch

Description: Gets the current port latch value (least significant four bits) from the device.

Supported Devices: CP2103
Prototype: SI_STATUS SI ReadlLatch (HANDLE Handle, LPBYTE Latch)

Parameters: 1. Handle—Handle to the device as returned by S/_Open.

2. Latch—Pointer for a return port latch value (Logic High = 1, Logic Low = 0).
Return Value: Sl STATUS = S| SUCCESS or
SI_DEVICE_NOT_FOUND or
SI_FUNCTION _NOT_SUPPORTED or
SI_GLOBAL_DATA_ERROR or

SI_INVALID_HANDLE or
SI_INVALID_PARAMETER

2.18. SI_WriteLatch
Description: Sets the current port latch value (least significant four bits) from the device.

Supported Devices: CP2103
Prototype: SI STATUS SI WriteLatch (HANDLE Handle, BYTE Mask, BYTE Latch)

Parameters: 1. Handle—Handle to the device as returned by S/_Open.
2. Mask—Determines which pins to change (Change = 1, Leave = 0).
3. Latch—Value to write to the port latch (Logic High = 1, Logic Low = 0).
Return Value: Sl STATUS = S| SUCCESS or
SI_DEVICE_NOT_FOUND or
SI_FUNCTION _NOT_SUPPORTED or

S|_GLOBAL_DATA_ERROR or
SI_INVALID_HANDLE

2.19. SI_GetPartNumber

Description: Retrieves the part number of the CP210x device for a given handle.

Supported Devices: CP2101/2/3
Prototype: SI_STATUS SI GetPartNumber (HANDLE Handle, LPBYTE PartNum)

Parameters: 1. Handle—Handle to the device as returned by S/_Open.
2. Latch—Pointer for a return part number.

Return Value: S| _STATUS = S| SUCCESS or
SI_INVALID_PARAMETER or
SI_INVALID_HANDLE

®
@ Rev. 1.8 11

SILICON LABS

AN169

2.20. SI_DevicelOControl

Description: Interface for any miscellaneous device control functions. A separate call to S/_DevicelOControl
is required for each input or output operation. A single call cannot be used to perform both an
input and output operation simultaneously. Refer to DevicelOControl function definition on
MSDN Help for more details.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7

Prototype: SI_STATUS SI DeviceIOControl (HANDLE Handle, DWORD IOControlCode,
LPVOID InBuffer, DWORD BytesToRead, LPVOID OutBuffer,
DWORD BytesToWrite, LPDWORD BytesSucceded)

Parameters: . Handle—Handle to the device as returned by SI_Open.
. 10ControlCode—Code to select control function.

. InBuffer—Pointer to input data buffer.

. OutBuffe—Pointer to output data buffer.

1
2
3
4. BytesToRead—Number of bytes to be read into InBuffer.
5
6. BytesToWrite—Number of bytes to write from OutBuffer.
7

. BytesSucceded—Address of a DWORD variable that will contain the number of bytes read by
a input operation or the number of bytes written by a output operation on return.

Return Value: Sl STATUS = S| SUCCESS or
SI_DEVICE_IO_FAILED or
SI_INVALID_HANDLE

®
12 Rev. 1.8 @

SILICON LABS

AN169

3. Device Interface Functions

The USBXpress firmware library implements a set of device interface functions that provide an Application
Programming Interface (API) on the C8051F32x and C8051F34x microcontrollers. These functions provide a
simplified I/O interface to the MCU's USB controller, thus eliminating the need to understand and manage low-level
USB hardware or protocol details. The API is provided in the form of a library file precompiled under the Keil C51
tool chain. Device firmware must be developed using the Keil Software C51 tool chain. The device interface
functions available are:

USB Clock Start() - Initializes the USB clock

USB Init() - Enables the USB interface

Block Write () - Writes a buffer of data to the host via the USB
Block Read/() - Reads a buffer of data from the host via the USB
Get Interrupt Source () - Indicates the reason for an API interrupt
USB_Int Enable() - Enables the API interrupts

USB_Int Disable () - Disables APl interrupts

USB Disable () - Disables the USB interface

USB_Suspend () - Suspend the USB interrupts

USB Get Library Version() - Returns the USBXpress firmware library version

The APl is used in an interrupt-driven mode. The user must provide an interrupt handler located at vector address
0x0083 (interrupt 16) for the 'F320/1/6/7 devices, or at vector address 0x008B (interrupt 17) for the 'F34x devices.
This handler will be called upon at any USB API interrupt. Once inside this ISR, a call to Get_Interrupt_Source is
used to determine the source of the interrupt (this call also clears the pending interrupt flags).

The USBXpress firmware library operates the MCU's USB controller at USB Full Speed, and uses the Bulk
Transfer type with a data payload of 64 bytes per packet. Code developed for a specific MCU device family ('F320/
1, 'F326/7, or 'F34x) must use USBXpress device firmware libraries specific to that family. See "Appendix C—
Firmware Library Notes” for more technical details, and differences between the MCU device firmware libraries.

Note: The USBO hardware interrupt located at vector address 0x0043 (interrupt 8) is claimed by USBXpress, and
is used to handle low-level USB protocol details. The USB API interrupt (interrupt 16 for 'F320/1/6/7 devices and
interrupt 17 for 'F34x devices) is a virtual interrupt generated by the USBXpress firmware library whenever user
code needs to be notified of a USBXpress event. The events are defined in the description of the
Get Interrupt_Source function.

Example ISR for Firmware API (interrupt 16 for 'F32x devices, interrupt 17 for 'F34x devices):
void USB API TEST ISR(void) interrupt 16
{ BYTE INTVAL = Get Interrupt Source();

if (INTVAL & TX COMPLETE)

{ Block Write(In_ Packet, 8);

}

if (INTVAL & RX COMPLETE)

Block Read (Out_ Packet, 8);

®
@ Rev. 1.8 13

SILICON LABS

AN169

if
{

}

3.1.

Description:

(INTVAL & DEV_CONFIGURED)

// Initialize all analog peripherals here. This
// tells the device that it can now use as much
// specified by the MaxPower descriptor.
Init(); // Note: example command, not

(INTVAL & DEV_SUSPEND)

// Turn off all analog peripherals
Turn Off All(); // Note: example command, not

USB_Suspend () ; // This function returns once
// signalling is present.

// Turn all analog peripherals back on
Init(); // Note: example command, not

USB_Clock_Start

interrupt
current as

part of the API

part of the API

resume

part of the API

Enables the internal oscillator, initializes the clock multiplier, and sets the USB clock to 48 MHz

for USB full speed operation. If the clock multiplier is already initialized, the initialization proce-
dure is skipped. This function should be called before calling USB_Init or accessing any vari-
ables located in the upper 1024 bytes of XRAM (USB clock domain). CLKSEL[1:0] is not affected
by this function. See "Appendix A—SFRs that Should Not be Modified After Calling
USB_Clock_Start and USB_Init” for more details. See "Appendix C—Firmware Library Notes” for
instructions on how to use the external oscillator as the USB clock.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7

Prototype: void USB Clock Start (void)

Parameters: None

Return Value: None

14

Rev. 1.8

>

SILICON

LABS

AN169

3.2. USB_lInit

Description:

Enables the USB interface, the USB clock recovery feature, and the use of Device Interface
Functions. On return, the USB interface is configured, and C8051F32x interrupts are globally
enabled. User software should not globally disable interrupts (set EA = 0), but should enable or
disable user configured interrupts individually using the interrupt's source interrupt enable flag
present in the IE, EIE1, or EIE2 SFRs. Before calling USB_Init, a call to USB_Clock_Start should
be made to configure the USB clock. See "Appendix A—SFRs that Should Not be Modified After
Calling USB_Clock_Start and USB_Init” for more details.

This function allows the user to specify the Vendor and Product IDs as well as Manufacturer,
Product Description, and Serial Number strings that are sent to the host as part of the device's
USB descriptor during the USB enumeration (device connection).

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7

Prototype:

Parameters:

Return Value:

void USB _Init (UINT VendorID, UINT ProductID, BYTE *ManufacturerStr,
BYTE *ProductStr, BYTE *SerialNumberStr, BYTE MaxPower,
BYTE PwAttributes, UINT bcdDevice)

1. VendorID—16-bit Vendor ID to be returned to the host's Operating System during USB
enumeration. Set to 0x10C4 to use the default Silicon Laboratories Vendor ID.

2. ProductiD—16-bit Product ID to be returned to the host's Operating System during USB
enumeration. Set to 0XEA61 to associate with the default USBXpress driver.

3. ManufacturerStr—Pointer to a character string. See Appendix B for formatting. NULL pointer
should not be used because the library does not contain a default value for this string.

4. ProductStr—Pointer to a character string. See Appendix B for formatting. NULL pointer should
not be used because the library does not contain a default value for this string.

5. SerialNumberStr—Pointer to a character string. See Appendix B for formatting. NULL pointer
should not be used because the library does not contain a default value for this string.

6. MaxPower—Specifies how much bus current a device requires. Set to one half the number of
milliamperes required. The maximum allowed current is 500 milliamperes, and hence any
value above 0xFA will be automatically set to OxFA. Example: Set to 0x32 to request 100 mA.

7. PwAttributes—Set bit 6 to 1 if the device is self-powered and to 0 if it is bus-powered. Set bit 5
to 1 if the device supports the remote wakeup feature. Bits 0 through 4 must be 0 and bit 7
must be 1. Example: Set to 0x80 to specify a bus-powered device that does not support
remote wakeup.

8. bcdDevice—The device's release number in BCD (binary-coded decimal) format. In BCD, the
upper byte represents the integer, the next four bits are tenths, and the final four bits are
hundredths. Example: 2.13 is denoted by 0x0213.

None

®
@ Rev. 1.8 15

SILICON LABS

AN169

3.3. Block_Write

Description: Writes a buffer of data to the host via USB. Maximum block size is 4096 bytes. Returns the num-
ber of bytes actually written. This matches the parameter NumBytes unless an error condition
occurs. A zero is returned if Block_Write is called with NumBytes greater than 4096. If NumBytes
is greater than 64 bytes, the Bulk Transaction is split into multiple packets, each with a 64-byte
data payload (except last packet). Block_Write returns after copying the last packet to the device
USB transmit buffer. The completion of the transaction is then indicated by the TX_COMPLETE
USB APl interrupt.

Sl_Read can read from 0 to 64 kB of data. If Block_Write is called multiple times before SI_Read
is called then there is potential to read all of the data in the host's buffer depending on the
amount of data requested in the read. For example, if Block Write is called 4 times, and sends a
byte of data in each block the host side can call SI_Read requesting 4 bytes and get the data
from all 4 of the Block_Writes at once.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7
Prototype: UINT Block Write (BYTE *Buffer, UINT NumBytes)

Parameters: 1. Buffer—Pointer to a memory location where data to be written is stored.
2. NumBytes—Number of bytes to write (1-4096).

Return Value: Returns an unsigned 16-bit value indicating the number of bytes actually written.

3.4. Block_Read

Description: Reads a buffer of data sent from the host via USB. Maximum block size is 64 bytes. The block of
data is copied from the USB interface to the memory location pointed to by Buffer. The device
USB receive buffer will be emptied on return regardless of whether or not the entire buffer was
read by Block_Read. The maximum number of bytes to read from the device USB receive buffer
is specified in NumBytes. The number of bytes actually read (copied to Buffer) is returned by the
function. A zero is returned if there are no bytes to read. Typically, Block_Read should be called
after receiving a data packet, indicated by an RX_COMPLETE USB API interrupt.

Multiple calls to Block_Read might be needed to read all data sent via one SI_Write call if the
buffer sent to SI_Write is more than 64 bytes.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7
Prototype: BYTE Block Read (BYTE *Buffer, BYTE NumBytes)

Parameters: 1. Buffer—Pointer to a memory location where data will be copied.
2. NumBytes—Number of bytes to read (1-64).

Return Value: Returns an unsigned 8-bit value indicating the number of bytes actually read.

®
16 Rev. 1.8 @

SILICON LABS

AN169

3.5. Get_Interrupt_Source

Description: Returns an 8-bit value indicating the reason(s) for the API interrupt, and clears the USB API
interrupt pending flag(s). This function should be called at the beginning of the user's interrupt
service routine to determine which event(s) has/have occurred.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7
Prototype: BYTE Get Interrupt Source (void)
Parameters: None

Return Value: Returns an unsigned 8-bit code indicating the reason(s) for the API interrupt. The code can indi-
cate more than one type of interrupt at the same time. The return values are coded as follows:

0x00 No USB API Interrupts have occurred

0x01 USB_RESET USB Reset Interrupt has occurred

0x02 TX COMPLETE Transmit Complete Interrupt has occurred

0x04 RX _COMPLETE Receive Complete Interrupt has occurred

0x08 FIFO_PURGE Command received (and serviced) from the host to purge
the USB buffers

0x10 DEVICE_OPEN Device Instance Opened on host side

0x20 DEVICE_CLOSE Device Instance Closed on host side

0x40 DEV_CONFIGURED Device has entered configured state

0x80 DEV_SUSPEND USB suspend signaling present on bus

3.6. USB_Int_Enable

Description: A call to this function enables the USB API to generate interrupts. If enabled, a USB API interrupt
is generated on the following API events:

A USB Reset has occurred.

A transmit scheduled by a call to Block Write has completed.

The RX buffer is ready to be serviced by a call to Block Read.

A oON-=

A command from the host has caused the USB buffers to be flushed.
5. A Device Instance has been opened or closed by the host.

The cause of the interrupt can be determined by a call to Get_Interrupt_Source. If USB API interrupts are enabled,
the user must provide an interrupt service routine with the entry point located at the interrupt 16 vector
(Address = 0x0083). When this function is called, control will transfer to the interrupt 16 handler within one ms, if
any interrupts are currently pending.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7
Prototype: void USB Int Enable (void)

Parameters: None

Return Value: None

®
@ Rev. 1.8 17

SILICON LABS

AN169

3.7. USB_Int_Disable

Description:

This function disables the USB API interrupt generation.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7

Prototype:

Parameters:

Return Value:

void USB_Int Disable (void)

None

None

3.8. USB_Disable

Description:

This function disables the USB interface and the use of Device Interface Functions. On return,
the USB interface is no longer available and API interrupts are turned off. The clock multiplier is
turned off to reduce power consumption unless the system clock is set to the

'4x Clock Multiplier/2' option (CLKSEL[1:0] = 10b).

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7

Prototype:

Parameters:

Return Value:

void USB_Disable (void)

None

None

3.9. USB_Suspend

Description:

This function allows devices to meet the USB suspend current specification. To be USB compli-
ant, a USB device must support the Suspend feature by reducing its total power consumption to
be under 500 pA. This function should only be called when the DEV_SUSPEND USB API inter-
rupt is received. All unnecessary user peripherals should be turned off before making this func-
tion call, and can be turned back on after the call returns. This routine powers down the USB
transceiver and the clock multiplier and then suspends the internal oscillator until USB resume
signaling occurs. Once USB traffic is detected, internal oscillator is restarted, USB_Clock_Start is
called, and then the function call returns to user code. Note: USB_Suspend will set the system
clock to internal oscillator by default. If system clock is set to clock multiplier when
USB_Suspend is called, that setting will be restored before this function returns. If it is necessary
to use any other setting for system clock, user code should modify CLKSEL on return from
USB_Suspend.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7

Prototype:
Parameters:

Return Value:

void USB_Suspend (void)
None

None

18

®
Rev. 1.8 @

SILICON LABS

AN169

3.10. USB_Get_Library_Version

Description: This function returns the USBXpress firmware library version number in BCD. This function is
available in USBXpress firmware libraries from release 2.4 and above. Example: Rev. 2.41 is
returned as 0x0241.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7
Prototype: UINT USB Get Library Version (void)

Parameters: None

Return Value: Returns the USBXpress firmware library version number as an unsigned 16-bit value in BCD for-
mat.

®
@ Rev. 1.8 19

SILICON LABS

AN169

APPENDIX A—SFRS THAT SHouLD NOT BE MODIFIED AFTER CALLING
USB_CLOCK_START AND USB _INIT

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7

The following is a list of SFRs configured by the API. These should not be altered at any time after the first call to
USB_Clock_Start or USB_ Init. Most of these SFRs are dedicated to the USB peripheral on the chip and should be
of no concern to the programmer under most circumstances.

Off-Limits USB SFRs—USBOXCN, USBOADR, and USBODAT

Off-Limits Other SFRs—CLKMUL, OSCICN (Only bits 5-7 are off-limits), CLKSEL (Only bits 4-6 are off-limits).
These three SFRs are used to enable the internal oscillator, engage the 4x clock multiplier to 48 MHz, and to use
that as the clock for the USB core. For the API to function properly, these should not be modified.

APl—User Shared SFRs:

The CLKSEL SFR is used for choosing both the system clock source and USB clock source. Care should be used
to OR in the system clock desired into Bits 1-0, so as not to disturb Bits 6—4, which are the USB clock selection
bits.

The OSCICN SFR is used to control the internal oscillator. The IFCN[1:0] bits can be modified as required by the
user to modify the system clock frequency. Note that the IFCN bits do not affect the 12 MHz clock multiplier input or
the USB clock. Care should be taken to preserve bits 5-7 while modifying the IFCN bits.

®
20 Rev. 1.8 @

SILICON LABS

AN169

APPENDIX B—FORMAT OF USER-DEFINED PRODUCT DESCRIPTION AND
SERIAL NUMBER STRINGS

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7

It is possible for the API to use strings defined and allocated in user firmware instead of the API default strings. The
syntax for defining and using custom strings is:

unsigned char CustomString[]={number of string elements,0x03,'A',0,'B',0,'C',0...'2"',0};
The number of string elements = number of letters x 2 + 2, since every letter needs to be separated from the next
by zeros, and USB requires that the first element be the length, and the second element is 0x03, meaning string

descriptor type. This sounds harder than it is, for example:

//ABC Inc
unsigned char CustomStringl[]={16,0x03,'A',0,'B',0,'Cc',0,"' ',0,'7T',0,'n',0,'c"',0};

//Widget
unsigned char CustomString2[]={14,0x03,'w',0,'i',0,'d',0,'g',0,'e',0,'t",0};

//12345
unsigned char CustomString3[]={12,0x03,'1',0,'2',0,'3',0,'4',0,'5",0};

Then, if the Vendor ID and Product ID were OXxABCD and 0x1123, the call to USB_Init would be
USB_Init (OxABCD, 0x1123, CustomStringl, CustomString2, CustomString3);

Note: It is useful to use the code keyword preceding the CustomString definitions, so that the strings are located in
code space.

®
@ Rev. 1.8 21

SILICON LABS

AN169

APPENDIX C—FIRMWARE LIBRARY NOTES

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7

Tool Chain

The USBXpress Firmware Library has been developed with the Keil C51 Tool Chain, and is distributed as a pre-
compiled library. Hence the user project should be built using the Keil C51 tool chain, with the USB_API.LIB
included as an external library. A header file USB_API.h with macro definitions and function prototypes is also
provided.

Memory-Model Concerns

The firmware API library was created using the small memory model. Using this library in a project with a default
memory model of large or compact can cause warnings to occur, depending on warning level settings. To avoid
this, set the default memory model to small, and override this setting wherever necessary by defining each function
with the large compiler keyword.

The “using” Keyword
The “using” keyword should not be used with the USB API ISR. This compile-time optimization is not supported by
the USBXpress library code that is used to create the virtual USB API interrupt (interrupt # 16).

Internal Functions and Variables

All internal function names and global variable names in the USBXpress firmware library begin with the prefix
“USBXcore”. To avoid conflict with these PUBLIC symbols that will, if duplicated, result in “MULTIPLE PUBLIC
DEFINITIONS” errors, global variables and function names in user firmware should not begin with this prefix.

Using External Oscillator or Clock

By default, USBXpress uses the internal 12 MHz oscillator along with the 4x Clock Multiplier as the USB Clock. To
override this, the user firmware can provide its own USB_Clock_Start function. The Keil linker will then override the
library function with the user-supplied function. If a high precision external crystal or clock is used, you may want to
turn off the USB clock recovery feature. To do this, user firmware code should include a dummy function definition
as shown below. This will override the corresponding internal function in the library.

void USBXcore_CIlkRec(void) large { }

Saving XDATA Space

The USB_Init function parameters are passed in direct memory locations in user XDATA space determined by the
linker. If user firmware needs this contiguous space, these 17 bytes can be relocated to unused XDATA space
within the USBXpress reserved area. To do this, the following should be added to the command line while invoking
the linker (the value for “address” is shown in Table 1):

XDATA (?XD? USB_INIT?USB API (<address>))

Example: BL51.exe filel.obj,file2.obj,fileN.obj,USB API.LIB TO prjl RS(256) PL(68)
PW (78)XDATA(?XD?_USB_INIT?USB_API (0x03EF))

®
22 Rev. 1.8 @

SILICON LABS

AN169

Firmware Library Code Size and Other Details

The Flash memory occupied by the USBXpress firmware library depends on the number of library functions used
by the user application. This is because the linker includes only the called functions in the build. If all USBXpress
functions are used, the library would occupy ~3 kB of code memory. The low-level settings configured by the
USBXpress firmware library are shown in Table 1.

Table 1. Firmware Library Technical Details

C8051F320/1

C8051F326/7

C8051F340/1/2/3/4/51617

Internal Oscillator!

Enabled (OSCICN.7 = 1)

4x Clock Multiplier’

Enabled (Source: Internal Oscillator)

USB Clock Recovery'

Enabled (CLKREC = 0x89)

USB Clock Source'

Clock multiplier (48 MHz)

USB Speed

Full Speed (12 Mbps)

USB Transfer Type

Bulk Transfer

Max data payload size
(Control Endpoint, EP0)

64 bytes per data packet

Number of bulk data
endpoints used

2 (EP2 in Split Mode)

2 (EP1 in Split Mode)

2 (EP2 in Split Mode)

Max data payload size
(Bulk data endpoints)

64 bytes per data packet

Double buffering

Enabled for both IN and
OUT endpoints (FIFO can
hold two packets each at
any time).

Enabled for OUT endpoint
(FIFO can hold two packets
at any time). Disabled for IN
endpoint.

Enabled for both IN and OUT
endpoints (FIFO can hold
two packets each at any
time).

XDATA space reserved
by the library?

448 bytes XDATA (0x0640
to 0x07FF) [includes USB
FIFO space]

116 bytes (0x038C to
0x03FF) XDATA + 256 bytes
(0x00 to OxFF) USB FIFO

448 bytes XDATA (0x0640 to
0x07FF) [includes USB FIFO
space]

Starting address to
relocate USB_lInit
function parameters
(see " Saving XDATA
Space” on page 22)

0x07AF

0x03EF

0x07AF

USBXpress Firmware
Library Name

USBX_F320_1.LIB

USBX_F326_7.LIB

USBX_F34X.LIB

Notes:

1. The clock settings listed in this table are valid only if the default USBXpress clock functions (USB_Clock_Start and
USBXcore_ClkRec) are not overridden by user firmware.
2. This reserved space includes the relocated USB_Init parameters using linker commands. See " Saving XDATA Space"
on page 21 for more details.

>

SILICON LABS

Rev. 1.8

23

AN169

Type Definitions from Firmware Library Header File USB_API.h

// UINT type definition
#ifndef UINT DEF_
#define UINT DEF
typedef unsigned int UINT;

#endif /* UINT DEF */

// BYTE type definition
#ifndef BYTE DEF

#define BYTE DEF

typedef unsigned char BYTE;

#endif /* BYTE DEF */

®
24 Rev. 1.8 @

SILICON LABS

AN169

APPENDIX D—DEFINITIONS FROM C++ HEADER FILE SiUSBXP.H

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7, CP2101/2/3

// Return codes

#define SI SUCCESS 0x00
#define SI_DEVICE NOT_ FOUND OxFF
#define SI_INVALID HANDLE 0x01
#define SI_READ ERROR 0x02
#define SI_RX QUEUE NOT READY 0x03
#define SI_WRITE ERROR 0x04
#define SI_RESET ERROR 0x05
#define SI_INVALID PARAMETER 0x06
#define SI_INVALID REQUEST LENGTH 0x07
#define ST DEVICE IO FATLED 0x08
#define SI_INVALID BAUDRATE 0x09
#define SI_FUNCTION NOT_ SUPPORTED 0x0a
#define SI_GLOBAL DATA ERROR 0x0b
#define SI_SYSTEM ERROR_CODE 0x0c
#define SI_READ TIMED OUT 0x0d
#define SI_WRITE TIMED OUT 0x0e
#define SI IO PENDING 0x0f

// GetProductString() function flags

#define SI_RETURN SERTAL NUMBER 0x00
#define SI_RETURN DESCRIPTION 0x01
#define SI_RETURN LINK_NAME 0x02
#define SI RETURN VID 0x03
#define SI RETURN PID 0x04

// RX Queue status flags

#define SI RX NO_ OVERRUN 0x00
#define SI _RX EMPTY 0x00
#define SI RX OVERRUN 0x01
#define SI_RX READY 0x02

// Buffer size limits

#define SI_MAX DEVICE STRLEN 256
#define SI_MAX READ SIZE 4096*16
#define SI_MAX WRITE_ SIZE 4096

// Type definitions
typedef int SI_STATUS;
typedef char ST DEVICE STRING[SI MAX DEVICE STRLEN];

®
@ Rev. 1.8 25

SILICON LABS

AN169

// Input and Output pin Characteristics

#define SI_HELD INACTIVE 0x00
#define SI HELD ACTIVE 0x01
#define SI_FIRMWARE CONTROLLED 0x02
#define SI_RECEIVE FLOW_CONTROL 0x02
#define SI_TRANSMIT ACTIVE SIGNAL 0x03
#define SI_ STATUS INPUT 0x00
#define ST HANDSHAKE LINE 0x01

// Mask and Latch value bit definitions

#define SI GPIO 0 0x01
#define SI GPIO 1 0x02
#define SI GPIO 2 0x04
#define SI GPIO_ 3 0x08
// GetDeviceVersion () return codes

#define SI CP2101 VERSION 0x01
#define SI CP2102 VERSION 0x02
#define SI CP2103 VERSION 0x03

// Common variable and type definitions used

typedef unsigned long DWORD;
typedef int BOOL;
typedef unsigned char BYTE;
typedef unsigned short WORD;
typedef BYTE near *PBYTE;
typedef DWORD near *PDWORD;
typedef DWORD far *LPDWORD;
typedef void far *LPVOID;

®
26 Rev. 1.8 @

SILICON LABS

AN169

APPENDIX E—ERROR CODE EXPLANATIONS AND DEBUGGING

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7, CP2101/2/3
SI_SUCCESS

The function succeeded.

SI_DEVICE_NOT_FOUND

The device cannot be found on the system. Make sure the device is plugged in and powered. If the device is
plugged in, make sure that all previous application handles to the device have been closed (S/_Close). If a
previous instance of the application was not able to close its handle to the device before exiting, disconnect and
reconnect the device. To avoid having to temporarily remove the device in this case, you may have your application
store the current handle value (returned by SI_Open) in the Windows registry so that if the application crashes, the
handle is still accessible and can be closed (S/_Close).

SI_INVALID_HANDLE

The value of the Handle passed to the function is not valid. A valid handle is obtained by declaring a HANDLE
variable in your program and passing the address of that HANDLE to the SI_Open function. A Handle may become
invalid if the device is removed from the system, so first verify that the device is connected.

SI_RX_QUEUE_NOT_READY

There is no data available. The receive queue is empty.
SI_WRITE_ERROR

The write operation failed. The device may have been removed.
SI_INVALID_PARAMETER

An invalid parameter was passed to the DLL function called. See the function definition for valid parameter types
and/or ranges.

SI_INVALID_REQUEST LENGTH

See SI_Read and SI_Write function descriptions for valid request lengths.
SI_DEVICE_IO_FAILED

Device IO operation failed. The device may have been removed.
SI_INVALID_BAUDRATE

See the CP210x device-specific data sheet for supported baud rates.
SI_FUNCTION_NOT_SUPPORTED

The function called is not supported by the device. For example, attempting to use the S/ ReadLatch and
SI_WriteLatch functions on a device other than the CP2103 will cause the functions to return this value.

S|_GLOBAL_DATA_ERROR

An error has occurred such that the thread global data cannot be retrieved. Unload and reload the DLL if this return
code is received.

SI_SYSTEM_ERROR_CODE

Call GetLastError (Win32 Base) to retrieve Windows System Error Code. The error codes are defined on MSDN.

®
@ Rev. 1.8 27

SILICON LABS

AN169

SI_READ_TIMED_OUT or SI_WRITE_TIMED_OUT
The read or write request timed out based on the current timeout values.
SI_I0_PENDING

I/O is pending, wait on the OVERLAPPED object supplied to the SlI Read or SlI_Write function using
WaitForSingleObject(), GetOverlappedResult(), and/or Cancello() as documented on MSDN by Microsoft.

®
28 Rev. 1.8 @

SILICON LABS

AN169

APPENDIX F—UPDATING HOST CODE TO WORK UNDER
USBXPRESS 3.X.X

Note: The USBXpress 3.X.X package works different functionally from previous versions (2.42 and earlier). Do not
mix and match any of these old DLLs or Drivers with any part of the 3.X.X package. This will result in data error and
possibly a system crash.

The SI_Close() function has changed from SI_Close(&HANDLE Handle) to SI_Close(HANDLE Handle). Versions
before 3.X.X would set the HANDLE value to INVALID_HANDLE_VALUE when a close was called. Now it is the
responsibility of the developer to set the handle value to be invalid. For Visual Basic users, this change will also
require a Declare statement modification. The correct way to call this function in VB is:

Public Declare Function SI_Close Lib "SiUSBXp.DLL" _
(ByVal cyHandle As Long) As Integer

The Read and Write functions have changed to include a parameter for a pointer to an initialized OVERLAPPED
object. For C++ users the prototype has been set so that this parameter is false by default allowing older code to
be ported directly. For VB users the Declare statements will have to be updated as follows:

Public Declare Function SI_Read Lib "SiUSBXp.DLL" _
(ByVal cyHandle As Long, ByRef IpBuffer As Byte, _
ByVal dwBytesToRead As Long, ByRef IpdwBytesReturned As Long, _
ByVal IpOverlapped As Long) As Integer

Public Declare Function SI_Write Lib "SiUSBXp.DLL" _
(ByVal cyHandle As Long, ByRef IpBuffer As Byte, _
ByVal dwBytesToWrite As Long, ByRef IpdwBytesWritten As Long, _
ByVal IpOverlapped As Long) As Integer

®
@ Rev. 1.8 29

SILICON LABS

AN169

DOCUMENT CHANGE LIST

Revision 1.6 to Revision 1.7

m Updated all Host API information to reflect 3.X.X changes. See "Appendix F—Updating Host Code to Work
Under USBXPRESS 3.X.X” for important compatibility information.

m Device API documentation:
e Updated description in "3. Device Interface Functions" to reflect support for 'F326/7 and 'F34x devices.

e Added description of function "3.10. USB_Get_Library_Version".
e Updated Table 1 to show details of the 'F326/7 and 'F34x device firmware libraries.

Revision 1.7 to Revision 1.8

m Modified return values for SI_Write.
m Modified descriptions of blocking in SI_Write/SI_Read.
m Further explained the Block_Write in relation to SI_Read.

®
30 Rev. 1.8 @

SILICON LABS

AN169

NOTES:

>

SILICON LABS

Rev. 1.8

31

AN169

CONTACT INFORMATION

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701

Tel: 1+(512) 416-8500

Fax: 1+(512) 416-9669

Toll Free: 1+(877) 444-3032

Email: MCUinfo@silabs.com
Internet: www.silabs.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories, Silicon Labs, and USBXpress are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

®
32 Rev. 1.8 @

SILICON LABS

	1. Introduction
	Figure 1. USBXpress Data Flow

	2. Host API Functions
	2.1. SI_GetNumDevices
	2.2. SI_GetProductString
	2.3. SI_Open
	2.4. SI_Close
	2.5. SI_Read
	2.6. SI_Write
	2.7. SI_FlushBuffers
	2.8. SI_SetTimeouts
	2.9. SI_GetTimeouts
	2.10. SI_CheckRXQueue
	2.11. SI_SetBaudRate
	2.12. SI_SetBaudDivisor
	2.13. SI_SetLineControl
	2.14. SI_SetFlowControl
	2.15. SI_GetModem Status
	2.16. SI_SetBreak
	2.17. SI_ReadLatch
	2.18. SI_WriteLatch
	2.19. SI_GetPartNumber
	2.20. SI_DeviceIOControl

	3. Device Interface Functions
	3.1. USB_Clock_Start
	3.2. USB_Init
	3.3. Block_Write
	3.4. Block_Read
	3.5. Get_Interrupt_Source
	3.6. USB_Int_Enable
	3.7. USB_Int_Disable
	3.8. USB_Disable
	3.9. USB_Suspend
	3.10. USB_Get_Library_Version

	Appendix A-SFRs that Should Not be Modified After Calling USB_Clock_Start and USB_Init
	Appendix B-Format of User-Defined Product Description and Serial Number Strings
	Appendix C-Firmware Library Notes
	Table 1. Firmware Library Technical Details

	Appendix D-Definitions from C++ header file SiUSBXp.h
	Appendix E-Error Code Explanations and Debugging
	Appendix F-Updating Host Code to Work Under USBXPRESS 3.X.X
	Document Change List
	Contact Information

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

